
A BOOTSTRAPPING APPROACH TOWARD SHARING OF INFORMATION ON SPACE
SYSTEMS

Takahiro Yamada

Institute of Space and Astronautical Science
Sagamihara, Japan

tyamada@pub.isas.ac.jp

ABSTRACT

Many kinds of information is used by engineering teams
and application software for spacecraft development and
ground systems development, but how the information is
structured is varied from team to team and from software
to software, even for the same kind of information. The
cost of developing spacecraft and ground systems can be
reduced by enabling sharing of information among
different teams and among different pieces of software.
This paper proposes a novel approach toward sharing of
information on space systems, in which (1) a generic
language for describing structures is defined, (2) domain
specific description languages are developed from the
generic language, and (3) mapping rules for representing
domain specific description languages with standard
languages like XML and UML are developed.

1. INTRODUCTION

Many kinds of information is used for spacecraft
development and ground systems development. For
example, information on how a spacecraft or an instrument
is constructed, what commands it receives, and what
telemetry it generates is used by many engineering teams
and many pieces of software. But how the information is
structured is varied from team to team and from software
to software, even for the same kind of information. For
example, the format of information used by a piece of
software is usually determined by the software that uses
the information. In other words, information is embedded
in the software that uses it (see Figure 1).

However, the cost of developing spacecraft and ground
systems can be reduced by enabling sharing of information
among different teams and different pieces of software.
This becomes possible if we have a method of generating
data independently of the team or software that uses it.
Data generated in this way can be used by any team or
software (see Figure 2).

For example, if the properties of a spacecraft are described
with a standard format that does not depend on any
engineering team or application software, this information
can be shared by many engineering teams and many pieces
of application software.

In fact, there are already activities toward sharing of
information using standard languages for information
description like XML (Extensible Markup Language) [1].
For example, there are several XML-based languages [2]-
[4] for describing the command and telemetry data of
spacecraft. Each of these languages provides a method of
structuring information on command and telemetry data,
but these languages are not compatible with each other
even though they are very similar to each other, because
each language uses a different concept for modelling
command and telemetry data.

In the field of software science, there are activities for
developing languages for describing software architectures
[5], which are collectively known as Architecture
Description languages (ADLS). Some space Agencies are

Software
A

Info.

Software
B

Info.

Software
C

Info.

Figure 1: Present Relationship Between Software
and Information

Software
A

Software
B

Info.

Software
C

Figure 2: Desirable Relationship Between Software
and Information

doing researches on how to apply ADLs to space systems.
These languages provide methods of structuring
information on architectures using a general model of
software architectures, but this model is not always
applicable to other kinds of architectures (for example,
hardware architectures, data architectures, etc.).

This paper proposes a novel approach toward sharing of
information on space systems, which is called a
bootstrapping approach. The core of this approach is a
generic language for describing structures, which can be
used to define domain specific models for structuring
information in different domains (e.g., spacecraft systems,
instruments, software, data units, etc.). From this generic
language, various domain specific languages can be
developed in a systematic way, and software tools for
processing information of multiple domains can be
developed.

By using these languages and tools, information on
systems can be shared by many engineering teams and
pieces of software. This will eliminate the need for re-
generating the same information in different formats and
re-developing tools to process information in different
domains. Therefore, this approach will greatly facilitate
reduction of system development cost.

2. BOOTSTRAPPING APPROACH TOWARD
SHARING OF INFORMATION

Figure 3 shows the concept of the bootstrapping approach
proposed in this paper.

The first step of this approach is to develop a generic
language for describing structures. This language, called
the Structure Description Language (SDL), provides a
mechanism for describing elements of a structure,

attributes of elements, and how elements are related with
each other. It also has a mechanism for defining specific
structural models. By using the capability of SDL to define
structural models, SDL can also be used for defining
reference models and architectures. In fact, many of the
existing reference models and architectures (e.g., Open
Systems Interconnection Reference Model (OSI-RM),
Reference Model of Open Distributed Systems (RM-ODP),
etc.) can be defined (or re-defined) with SDL. Therefore,
SDL can also be used as an architecture definition
language.

SDL defines five concepts: elements, attributes, classes,
relationships, and types. These concepts are explained in
section 3.

In each problem domain (such as space systems,
distributed systems, communications systems, software,
data, etc.), a domain specific description language is
developed using the concepts defined in SDL. Domain
specific description languages are extensions of SDL and
generated by adding domain specific classes and domain
specific relationships to SDL. A simple example of
domain specific description languages for describing data
units is shown in section 4. An example of how an existing
Architecture Description Language (ADL) can be re-
defined with SDL is shown in section 5.

Both SDL and domain specific description languages are
special languages, each having special construction rules
and a special vocabulary. But these languages can be
processed with existing software tools by defining rules of
representing these languages with standard languages like
XML. If XML is used, the mapping rule for each domain
specific description language can be described as an XML
Schema.. By using the Schema, the domain specific
language can be processed by appropriate XML tools that
are commercially available. Since the process of
generating XML Schemas for domain specific description
languages is straightforward to experts on XML, examples
of XML Schemas are not presented in this paper.

3. STRUCTURE DESCRIPTION LANGUAGE
(SDL)

The Structure Description Language (SDL) is a generic
language for describing structures. It describes elements of
a structure (a system, an architecture, information, a data
unit, etc.), attributes of elements, and how elements are
related with each other. But it is mostly used for
developing domain specific description languages.
Therefore, SDL is a meta-language.

SDL does not have any assumption on specific structural
models. Domain specific description languages are

(1) Structure Description Language (SDL)
(Defines a generic method for defining domain

specific description languages)

(2) Domain Specific Description Languages
(Define models for structuring information used in

specific domains)

(3) Mapping Rules
(Define rules for representing domain specific

description languages with standard languages like
XML)

Figure 3. Bootstrapping Approach Toward
Sharing of Information

developed by defining domain specific structural models
using the concepts provided by SDL.

The concepts defined in this language are elements,
attributes, classes, relationships and types, which will be
explained in the following subsections (see also Figure 4).

Elements

Elements are things that constitute something. For
example, onboard subsystems are elements of a spacecraft.
Sections are elements of a document. Spacecraft and
documents may be elements of some other things.

Elements may be related to other elements in some way
and the relationships between elements are described with
the concept of relationships defined in SDL, which will be
explained later. An element may have sub-elements and a
sub-element may have sub-sub-elements. This kind of
containment relationship is also described with the concept
of relationships in SDL.

Elements are defined by the users of SDL and domain
specific description languages when they define specific
structures.

Attributes

Each element has attributes. For example, a spacecraft
called spacecraft-A, which is an element, has
attributes such as launch date, mission-
objectives, current status, etc. Each element
has a pre-defined set of attributes, and what attributes an
element should have is determined by the class (explained
below) to which the element belongs.

Each element has a value for each attribute. For example,
element spacecraft-A has "9 May 2003" as the
value of attribute launch date. The attributes that an
element should have are determined by the class to which

the element belongs, but the values of the attributes are
specified for each individual element.

Classes

A class is a set of elements that have the same set of
attributes. Any element must belong to some class.
spacecraft-A, which was shown above as an example
of an element, belongs to a class called spacecraft.
Elements are called element instances when, depending on
the context, it is important to distinguish individual
elements belonging to a class from the class.

The definition of a class includes the definition of the
attributes that the elements belonging to that class must
have. But the values of the attributes are determined for
each individual element as explained above.

Every element must have an attribute called element-
ID, which is used to identify the element. Therefore, every
class must have element-ID in its attribute set.

Classes can be related with other classes by the inheritance
relationship. For example, the class planetary-probe
is a sub-class of the class spacecraft. Sub-classes
inherit the attributes of its super-class; that is, a sub-class
must have the attributes of its super-class and usually has
additional classes that are specific to that sub-class. For
example, the class planetary-probe has all the
attributes of its super-class spacecraft, but it has other
attributes like target body, arrival date, etc.

A sub-class may have sub-sub-classes and an inheritance
hierarchy relationship can be established among a set of
classes.

Classes are defined by the users of SDL, and the classes
that are commonly used in a specific domain are defined in
the domain specific description language for that domain.

Relationships

The concept of relationships is used to make assertions
about relationships that hold between elements. There are
two basic relationships defined in SDL: the containment
relationship and the linkage relationship.

The containment relationship is used to express that an
element contains another element. SDL has a reserved
word for the containment relationship, which is HAS. If
element A has element B, it is expressed in SDL as
"element-A HAS element-B."

The linkage relationship is used to express that an element
is associated with another element in some way. SDL has
a reserved word for the linkage relationship, which is IS-

SDL

Attributes - Characterize elements

Elements - Individual elements

Classes - Groups of attributes

Types - Templates of constructions

Relationships - Relate elements

Figure 4. Concepts defined in the Structure
Description Language (SDL)

LINKED-TO. If element A is associated with element B in
some way, it is expressed in SDL as "element-A IS-
LINKED-TO element-B."

If system A has sub-systems B, C and D and they are
linked as shown in Figure 5, the relationships between
these elements are expressed in SDL as:

 system-A HAS sub-system-B
 system-A HAS sub-system-C
 system-A HAS sub-system-D
 sub-system-B IS-LINKED-TO sub-system-C
 sub-system-B IS-LINKED-TO sub-system-D

In the above example, System A belongs to some class.
Sub-systems B, C and D may belong to a single class,
which may or may not be the same as the class of System
A, or different classes.

The users of SDL can define variations of the linkage
relationship. More complex relationships can also be
defined as combinations of the basic relationships. In
domain specific description languages, domain specific
relationships are defined. An example of a domain specific
relationship will be given in Section 4.

Types

Types in SDL is a relatively complex concept. A type is a
template for a group of elements that share the same
internal structure. Elements belonging to the same type
must belong to the same class, but not vice versa.
Therefore, types are categories of elements belonging to
the same class. But sub-classes are different from types.
Sub-classes are defined in terms of how elements are
characterizes as a whole, while types are defined in terms
of internal structures of elements.

A type specifies:

1) What elements of what classes must be contained in an
element of that type;

2) What relationships the contained elements must have;
and

3) Some attribute values that the element of that type and
its contained elements must have.

Attribute values that are not specified in the type definition
are determined for each element.

Types are defined by the users of SDL and domain
specific description languages. An example of type
definition will be given in Section 4.

Domain Specific Description Languages

Domain specific description languages are derived from
SDL by defining domain specific classes and domain
specific relationships. Two examples of domain specific
description languages are shown in Sections 4 and 5.

4. EXAMPLE OF DOMAIN SPECIFIC
DESCRIPTION LANGUAGES (1): A

LANGUAGE FOR DESCRIBING DATA UNITS

In this section, a simple language that describes the format
of data units is shown. This language defines two domain
specific classes and one domain specific relationship.

This language assumes that a data unit consists of either:

1) multiple data fields,
2) multiple data units, or
3) a combination of data fields and data units.

The basic difference between data units and data fields is
that a data field has a value but a data unit does not have a
value because it has a compound structure. (The word
value in this paragraph denotes the value of a data field,
not the value of an attribute discussed in Section 3.)

This language defines two domain specific classes:
data-unit and data-field. Each of these classes
has a set of attributes, as shown in Table 1.

Table 1. Attributes for Describing Data Units

Class Attributes
data-unit element-ID

explanation
length

data-field element-ID
explanation
length
value
encoding

System A

Sub-system B

Sub-system D

Sub-system C

Figure 5. Example of Relationships between
Elements

This language also defines a domain specific relationship
called IS-SEQUENCE-OF, which is defined as follows:

 A IS-SEQUENCE-OF B, C,..., Z
 if
 A HAS B,
 A HAS C,
 ...,
 A HAS Z,
 B IS-LINKED-TO C,
 C IS-LINKED-TO-D,
 ...,
 Y IS-LINKED-TO Z

In the above definition, A is of type data-unit and B
through Z are either of type data-unit or of type
data-field. Further, the assertion "A IS-LINKED-
TO B" is used to mean that A is followed by B.

The users of this language can define various packets,
messages, reports, directives as elements belonging to
class data-unit. The users may also define sub-classes
of class data-unit and class data-field by
defining additional attributes.

For example, let's define an element of class data-unit
which is called packet-A as follows:

Element: data-unit
 (element-ID = packet-A,
 explanation = "data units for variable-length data
 units",
 length = varied)

Let's further suppose that packet-A has two data fields:
header and application-data, each of which
belongs to class data-field. This is expressed as:

Packet-A IS-SEQUENCE-OF
 header: data-field,
 application-data: data-field

The users can also define a type, which is a special
template for a group of elements. For example, a type
called CCSDS-packet can be defied as follows:

CCSDS-packet: data-unit
 (element-ID = unspecified,
 explanation = "CCSDS Space Packet",
 length = varied)

CCSDS-packet IS-SEQUENCE-OF
 packet-header: data-unit
 (element-ID = unspecified,
 explanation = "CCSDS Packet Header",

 length = 6 octets),
 application-data: data-unit
 (element-ID = unspecified,
 explanation = "Application data field",
 length = varied)

packet-header IS-SEQUENCE-OF
 version-number: data-field
 (element-ID = version-number1,
 explanation = "Packet version",
 length = 3 bits,
 value = 0,
 encoding = integer),
 packet-type: data-field
 (element-ID = unspecified,
 explanation = "Packet type",
 length = 1 bit,
 value = unspecified),
 encoding = integer),
 ...

The above type definition specifies that:

1) Elements of type CCSDS-packet must have
packet-header and application-data, both of
which are data units.

2) packet-header must have version-number,
packet-type, and so on, which are data fields.

3) Some attributes must have specific values. For example,
the value of attribute length of version-number of
packet-header must be 3 for any element of this type.
The attribute values shown as "unspecified" in the type
definition are determined for each element.

There are already languages for describing data units [2]-
[4], but this approach can be used to enhance the usability
of existing languages in the following way. Existing
languages can be re-defined as domain specific description
languages with the concepts of SDL. Using this re-
definition of existing languages, translation rules between
different languages can be generated so that information
generated with a tool based on one language can be
processed with another tool based on another language.
Therefore, this approach can be used for making different
languages and different tools interoperable with each other.

5. EXAMPLE OF DOMAIN SPECIFIC
DESCRIPTION LANGUAGES (2): AN

ARCHITECTURE DESCRIPTION LANGUAGE

There are languages for describing software architectures
[5], which are collectively known as Architecture
Definition Languages (ADLs). Some of theses ADLs can
be re-defined as domain specific description languages

with SDL by re-defining the basic components of the
original languages as domain specific classes and the
construction rules of the original languages as domain
specific relationships.

Such an example for an architecture definition language
called xADL [6] is shown below. This language describes
software architectures using the following concepts:

1) Components (loci of computation),
2) Connectors (loci of communication),
3) Interfaces (exposed entry and end points), and
4) Links (concept to define topological arrangements).

These concepts can be re-defined with the concepts of
SDL as follows:

1) Components => a domain specific class,
2) Connectors => a domain specific class,
3) Interfaces => a domain specific class, and
4) Links => a domain specific linkage relationship.

xADL also has a mechanism for defining sub-architectures
and this can be re-defined with the containment
relationship of SDL.

SDL still lacks the capability of describing dynamic
behavior of elements, which we hope to add later. But
portions of ADLs that describe static characteristics of
software architectures can be re-defined with SDL.
Therefore, partial translation between ADLs will be
possible using SDL as a language definition language.

6. FUTURE WORK ITEMS

The work presented in this paper is still at a preliminary
stage, and there are many items that have to be worked out
to complete this approach. The following is a list of such
open items.

1) Semantic information. We need a unified method for
describnibing semantic information associated with
elements.

2) Dynamic behavior. We need a method for describing
dynamic behavior of elements.

3) Representation with graphical modeling languages. We
need to consider how SDL and domain specific description
languages are represented with graphical modeling
languages like Unified Modeling Language (UML).

7. CONCLUSION

In this paper, we have shown a novel approach toward
sharing of information on space systems and other systems.

This approach consists of three steps: (1) a generic
language for describing structures is defined, (2) domain
specific description languages are developed from the
generic language, and (3) mapping rules for representing
domain specific description languages with standard
languages like XML are developed.

We have presented the concepts of the Structure
Description Language (SDL) and shown how its concepts
are used to develop domain specific languages using two
examples. Examples of step 3 were not shown here
because step 3 is straightforward, if XML is used, by using
the capability of XML Schema.

By using this approach, various kinds of information can
be shared by many engineering teams and pieces of
software. This approach also enables generation of
software tools that do not depend on any specific domain.
Also, tools developed for specific domains can be used in
other domains, and tools developed for specific languages
can be used for processing data described with other
languages. The cost of developing spacecraft and ground
systems will be greatly reduced by this approach.

8. REFERENCES

[1] W3C, “Extensible Markup Language (XML) 1.0,”
REC-xml-19980210, W3C Recommendation, February
1998.

[2] T. A. Ames, K. B. Sall, C. E. Warsaw, and R. A.
Shafer, “Using XML for Instrument Description,
Communication and Control of the SOFIA/HAWC
Instrument,” AAS Meeting #193, Austin, TX, January
1999.

[3] S. Jann and , R. Gresser, “The FUSE Database: A
Single Source Database used throughout the Life Cycle
of the Mission: Bench Test Environment, Integration
and Test, and Operations,” SpaceOps 2000, Toulouse,
France, June 2000.

[4] T. Burch, “Using a Generic XML Driven Translator
for Downlink and Uplink Data,” First Joint Space
Internet Workshop, Greenbelt, MD, November 2000.

[5] N. Medidovic, R. N. Taylor, "A Classification and
Comparison Framework for Software Architecture
Description Languages," IEEE Transactions on
Software Engineering, Vol. 26, No. 1, pp.70-93,
January 2000.

[6] R. Khare, et al., "xADL: Enabling Architecture-Centric
Tool Integration with XML," Proceedings of the 34th
Annual Hawaii International Conference on System
Science (HICSS-34), 2001.

